构造应力对地下储油岩库稳定性影响数值模拟

冉莉娜1,丁国生1,王芝银2,韩 冰3

(1.中国石油勘探开发研究院廊坊分院,河北廊坊065007;2.中国石油大学(北京),北京102249;3.中国石油管道公司管道研究中心,河北廊坊065006)

摘 要:我国某拟建大型地下储油岩库选址区存在构造应力,使水平主应力大于对应深度 的自重应力。针对构造应力对地下储油库稳定性的影响问题,建立二维有限元模型进行弹塑 性数值模拟分析。结果表明:储库洞室轴线与水平最大主应力方向存在夹角时,位移值、应力 值及塑性破坏均大于平行时。综合考虑洞室轴线与最大主应力方向平行时储库稳定性较好。 建议在实际工程设计中,应使储库洞室轴线方向与水平最大主应力方向平行,以减小构造应力 的不利影响。

关键词:地下储油岩库;构造应力;稳定性;有限元;数值模拟 文章编号:1006-5539(2010)01-0037-04 文献标识码:A

0 前言

建造大型地下储油岩库是世界石油战略储备的 主要方式之一。地下储油岩库断面大、跨度长且用 于战略储备,对工程稳定性要求很高^[1-2]。

在缺乏地下储油洞库建造规范和经验的情况 下,数值模拟方法成为该工程稳定性分析及评价的 主要手段之一。

我国沿海拟建的某大型地下储油岩库属国家二 期石油战略储备库。地质勘查表明库区存在构造应 力,使得水平最大主应力和最小主应力均大于对应 深度的自重应力。

现有两设计方案。方案 1:洞室中轴线与水平 最大主应力方向平行;方案 2:洞室南北走向,洞室 中轴线与水平最大主应力方向有 15°的夹角。由于 构造应力的存在使该方案洞室垂直断面内存在剪应 力。

本文采取数值模拟方法,建立二维有限元模型, 模拟构造应力对该地下储油库的不同设计方案的稳 定性影响。

1 数值模拟原理

本文数值模拟屈服条件为 Drucker-Prager 准 则^[3]。该准则在主应力空间的屈服平面为圆锥形, 它在 π 平面上的投影为一圆形。屈服函数为:

$$F(\sigma) = \sigma + 3\alpha\sigma_m - k = 0$$
(1)

$$\vec{\sigma} = \sqrt{J_2}; \sigma_m = \frac{1}{3}(\sigma_x + \sigma_y + \sigma_z) = \frac{1}{3}I_1;$$

$$I_1$$
 为应力张量第一不变量; J_2 为应力偏量第二不变
量; α, k 为材料参数;

$$K = \frac{3C\cos\varphi}{(9+3\sin^2\varphi)^{1/2}}, \ \alpha = \frac{\sin\varphi}{(9+3\sin^2\varphi)^{1/2}}$$

当式(1)小于零时结构处于弹性阶段,等于零时结构进入塑性状态,并认为此时结构破坏。

2 地下储油岩库数值模拟^[4~5]

2.1 数值模拟模型

该地下储油岩库设计储油量近 300 × 10⁸ m³,由 若干个平行洞室组成,两个一组。由于各组洞室结

收稿日期:2009-07-02

作者简介:冉莉娜(1983-),女,黑龙江大庆人,助理工程师,硕士,主要从事盐穴储气库造腔工程及稳定性评价方面的研究。电话:(010)69213091。

构形式类似,取其中两组为研究对象。

模型覆盖层地表变化趋势根据库区地形图等高 线拟和,其它岩层结构来源于地质剖面图,如图1所 示。洞室埋深 - 50 m,主洞室断面尺寸 20 m×25 m,为直墙拱,下部倒角;施工洞断面尺寸为9 m×8 m。

2.2 岩层物理力学参数

地质资料表明,整个库区由上至下主要由覆盖 层、全风化层、强风化层、中风化层、微风化层及未风 化层等六种岩层组成,通过室内岩石力学实验获得 的岩体物理力学参数如表1所示。

图1 数值模拟模型示意

<u>, , , , , , , , , , , , , , , , , , , </u>	弹性模量/GPa	泊松比	重度/kN・m ⁻³	内摩擦角/(°)	粘聚力/MPa	抗拉强度/MPa			
覆盖层	2.000	0.286	25.6	36.87	3.000	3.000			
全风化层	27.943	0.235	25.6	45.50	5.605	3.256			
强风化层	32.138	0.175	25.5	33.60	11.967	3.256			
中风化层	32.400	0.179	26.2	33.60	11.967	3.826			
弱风化层	40.326	0.208	26.3	33.16	19.473	4.042			
未风化层	48.895	0.229	25.7	27.83	22.346	3.913			

表1 各层岩体物理力学参数

2.3 **计算构造应力**

构造应力采用现场实测值,根据实际工程洞室 轴线方向,对初始地应力进行转换,计算时的构造地 应力为:

方案 1: σ_x = -7.098 MPa, σ_{xy} = 0; 方案 2: σ_x = -7.098 MPa, σ_{xy} = -1.498 MPa。 竖直自重应力值按 σ_y = γH 计算。

3 数值模拟结果对比分析^[6~8]

3.1 位移变化规律

计算结果表明:洞室开挖,破坏了原岩的应力平 衡,应力发生重分布,引起位移变化。图2为洞室断 面位移场等值线及洞周位移矢量。由图2可见:方 案1水平方向位移等值线基本沿 Y 轴对称,垂直方 向位移基本沿 X 轴对称;方案2水平位移和垂直位 移等值线明显不对称。方案1最大位移出现在第四 主洞右壁中间;方案2最大位移出现在第四主洞的 右壁上部。两方案位移值对比见表2。

3.2 应力变化规律

图 3 为洞室断面应力等值及洞周最大主应力矢 量图。由图 3 可见:洞室顶底板受压,两壁受拉,最 大应力出现在洞室周边。方案 1 洞室断面最大主应 力和最小主应力基本对称,在洞室下部两倒角处出 现应力集中;方案 2 应力等值线不对称,且应力集中 主要在洞室左上角和右下角。两方案洞室断面最大 主应力值见表 2。

	水平方向最 大位移/m	垂直方向最 大位移/m	最大主应力 /MPa	最小主应力 /MPa	塑性区 单元数	塑性区面积 /m ²			
方案1	0.003 84	0.003 87	-4.019	- 21.36	74	174.8			
方案2	0.004 45	0.004 09	- 4. 466	-21.95	122	282.8			
差值/(%)	13.7	5.38	24.7	2.69	64.86	61.78			

表 2 最大位移值、最大主应力值及塑性区对比

图 3 洞室断面应力等值线及洞周最大主应力矢量图(单位:MPa)

3.3 破坏区分析

图 4 为拉破坏区分布图。方案 1 拉破坏区均匀 出现在主洞室两壁中间,而方案 2 拉破坏区分布不 规律,主要出现在主洞室右壁上方和第四主洞左壁 下方。

图 4 洞室断面拉破坏示意图

地下工程一般较关心塑性破坏情况。由于该地 下油库工程岩石材料参数较好,数值模拟过程中洞 室围岩未出现塑性破坏。为更好的反映构造应力在 对该工程不同设计方案稳定性的影响,将洞室开挖 层岩石材料参数进行折减,从而得出两方案的塑性 破坏情况,如图5所示。

图 5 洞室断面塑性破坏示意图

方案1塑性破坏位置为洞室顶拱和底板,除第 一主洞室出现顶拱和底板全部塑性破坏外,其余主 洞室和施工洞塑性区位置主要集中在顶拱中部和底 脚位置,基本沿洞室中轴对称;方案2塑性破坏区不 对称,主要出现在洞室顶拱左上角、底板右下角及右 边墙中部位置。两方案塑性区单元数及面积见表2。

4 结论

在缺乏地下储油岩库建设经验的情况下,采用 数值模拟方法,对某拟建地下储油岩洞库的不同设 计方案受构造应力的影响进行了研究,对比分析位 移场、应力场及破坏区分布规律,得出以下结论:

a. 地下储库洞室轴线与水平最大主应力方向存 在夹角时,其最大位移值以及最大应力值均大于平 行时,洞室断面最大主应力可达平行时的1.25倍。

b.储库洞室轴线与水平最大主应力方向存在 夹角时,拉破坏区分布不规律,拉破坏面积小于平行 时。剪应力的存在使得围岩受拉破坏减小。

c.洞室轴线与水平最大主应力方向存在夹角时,塑性区单元数为平行时的1.65倍,塑性区面积为平行时的1.62倍。

d.构造应力的存在将对地下储油岩库的位移 值、应力值、拉破坏及塑性破坏等产生影响,尤其以 应力影响和塑性破坏影响较为明显。

从整体考虑,地下储油岩库洞室轴线与水平最 大主应力方向平行方案的稳定性优于存在夹角方 案。建议在实际工程设计中,应使洞室轴线方向与 水平最大主应力方向一致,以减小构造应力对工程 稳定性造成的不利影响。

参考文献:

- [1] 王芝银,李云鹏,郭书太,等.大型地下储油洞粘弹性 稳定性分析[J].岩土力学,2005,26(11):1705-1710.
- [2] 王芝银,郭书太,李云鹏,等.地下储油岩洞数值模拟的正交试验设计[J].油气储运,2006,25(9):33-35.
- [3] 王芝银,李云鹏.地下工程位移反分析法及程序[M], 西安:陕西科学技术出版社,1993.
- [4] 李云鹏,王芝银,韩常领.不同围岩类别小间距隧道 施工过程模拟研究[J].岩土力学,2006,27(1);11-16.
- [5] 李云鹏,郭书太,王芝银.地下储油岩库围岩力学参数的正交设计[J].中国石油大学学报,2007,31(1);100-103.
- [6] 孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数 值模拟分析[J].浙江大学学报,2004,38(1):70-74.
- [7] 李晓红,王宏图,贾剑青,等.隧道及地下工程围岩稳 定性及可靠性分析的极限位移判别[J].岩土力学, 2005,26(6):851-854.
- [8] 曾 静,盛 谦,廖红建,等.佛子岭抽水蓄能水电站 地下厂房施工开挖过程的 FLAC^{3D}数值模拟[J].岩土 力学,2006,27(4):637-642.