C型环试验的加载应力计算

赵华莱1,姜 放2,李 112,曹晓燕2

(1四川大学,四川 成都 610065,2. 中国石油工程设计有限公司西南分公司,四川 成都 610017)

摘 要: 推导了 C型环的挠度——应力关系式,对 NACE TM 0177和 GB/T 15970.5中的加载应力计算公式进行了比较和讨论;进行了 C型环应力与加载挠度的测试,通过公式计算应力值与实际应力值的比较,对加载应力误差进行了分析和讨论,进一步确定了这两 你标准各自的适用范围,推荐了对试件进行合理加载的方式。

关键词: C型环; 加载应力计算; 应力腐蚀开裂

文章编号: 1006 5093(2007) 02 0021 04 文献标识码: A

0 前言

硫化物应力开裂(SSC)是酸性油气田金属材料 腐蚀的一种严重失效形式,事先没有任何预兆,一旦 发生往往会造成灾难性事故。

美国腐蚀工程师协会 (NACE)总结了实验室的 SSC评价结果和现场实践的经验, 颁布了 NACE TM 0177含 H₂S环境中金属材料抗硫化物应力开裂实 验室试验^[1]。该标准中有四种方法, 其中的方法 C——C型环试验, 主要用于评价金属在环向应力作 用下的抗应力腐蚀破裂敏感性能, 特别适用于直径 较小的管、棒腐蚀试验。国标 GB /T 15970.5金属和 合金的腐蚀——应力腐蚀试验^[2]第 5部分: "C型环 试样的制备和应用"也包括了 C型环试样的设计、 制备、加载、暴露及检查等方面, 提供了 C型环试样 应力状态和分布的分析。

对于应力腐蚀试验,最重要的两个因素是腐蚀 环境和加载应力。在试验中对试件进行合理的加 载,以得到准确的试验应力,是科学进行应力腐蚀试 验的关键之一。但这两个标准中,关于确定试验应 力的加载挠度计算公式却不同。本文通过对挠度一 应力关系式的推导,以及公式计算应力值与实际应 力值的比较,对加载应力误差进行了分析和讨论,确 定了这两个标准各自的适用范围,并推荐了对试件 进行科学加载的方式,以得到更准确的试验应力。

1 公式推导

C型环试样的加载方法有多种,通常采用横位 移加载,即沿环直径中央方向扭紧螺栓。C型环受 到的主要应力是周向应力,此应力是沿厚度方向梯 度变化的不均匀应力,即从某一表面上的最大拉应 力变化到相反表面上的最大压应力。应力也围绕着 C型环周向变化,从每个螺孔处的零值变到加载螺 栓对面圆弧中央的最大值^[2],见图 1。

计算图 1中 C型环外表面最大应力值与 C型 环沿螺栓方向挠度之间的关系时,有如下基本假设: C型环发生平面弯曲时符合平面假设,即变形前的 横截面在变形后仍然为平面;不考虑材料层间相互 作用的正应力,C型环处于单向受拉(压)应力状态。

 1 C型环外表面弯曲应力 σ 与作用力 F 之间的 关系推导

根据材料力学,曲梁(杆)在外载荷作用下,横 截面上往往同时存在弯矩 *M*、轴力 *N*和剪力 *Q*。与 剪力 *Q*对应的剪应力一般很小,可以不考虑^[3]。因 此应力计算公式为:

收稿日期: 2006 12-27

作者简介:赵华莱(1982),女,重庆南川人,硕士,就读于四川大学化工学院,主要从事油气田材料腐蚀研究。电话: (028)86014533

 $\sigma = \sigma_1 \pm \sigma_2 = \frac{N}{A} \pm \frac{My}{\rho S}$ (1)

式中 *N*——应力计算点受到的轴力, N; *A*——截面积, mm²;

4-----截田积, mm;

- M── 应力计算点受到的弯矩, N·mm;
- y——应力计算点到中性轴的距离, mm;
- $\rho = r + y$, r为中性层的曲率半径, mm;
- $S = A \cdot a$ 为整个截面对中性轴的静矩, mm³, a为形心到中性轴距离, mm。

对于 C 型环, 拉应力的最大值在图 1中 A—A 截面 C环外表面处。A—A截面所受内力如图 1中 b所示。该截面在 C型环外表面处的参数为:N =

$$-F, M = F \cdot R, A = w \cdot t y = \frac{d}{2} - r, \theta = \frac{d}{2}, S = wt$$

 $(R - r)_{\circ}$

w-----C型环宽度, mm;

d——C型环加载前外径, mm;

R——轴线曲率半径, mm。

将这些参数代入(1)式可得,C型环外表面所 受最大拉应力为:

$$\sigma = \frac{F(d-t)(d-2r)}{wtd(d-t-2r)} - \frac{F}{wt}$$
(2)

该 C型环为矩形截面,其中性层曲率半径 r的

公式为^[3]:
$$r = \frac{t}{\ln \frac{d}{d-t}}$$

曲梁形状的特征可通过曲梁轴线曲率半径 R 与截面形心到截面内侧边缘距离 c的比值来表示。

为简化计算,对于小曲率梁 ($R \gtrsim 10$ 时),弯曲 正应力 σ_2 可以近似用以下直梁公式计算^[3],且中 心轴通过截面形心。

$$\sigma_2 = \frac{My}{I}$$

- 式中 I— 截面惯性矩, mm^4 。对于矩形截面, $I = \frac{wt^3}{12}$
 - y'——由于中性轴通过形心截面,对 C型环, y'=t/2
 - 则 C型环外表面的最大应力为:

$$\sigma = \frac{6FR}{w_t^2} - \frac{F}{w_t} = \frac{F(6R - t)}{w_t^2}$$

当截面厚度 t远小于 R 时, $(GR - t) \approx GR$, 则此时 C型环外表面的最大应力可简化为:

$$\sigma = \frac{6FR}{wt^2} = \frac{3F(d-t)}{wt^2}$$
(3)

1.2 变形量 △与作用力 F之间的关系推导

忽略曲率的影响,采用能量法计算变形量与作 用力之间的关系^[4]。如图 1 在与螺栓轴线成 θ 角 的截面上弯矩 *M*、剪切力 *F*_Q和轴向力 *F*_N 分别为: *M* =*FR* sin θ , *F*_Q =*F* cos θ *F*_N =*F* sin θ .

令图 1中 F=1即得虚拟状态,于是虚拟状态的 内力为 $\overline{M}=R\sin\theta$, $\overline{F}_{Q}=\cos\theta$, $\overline{F}_{N}=\sin\theta$, 计算位移时,对于曲杆应令 dx=ds 由图 1知 $ds=rd\theta$,所以有.

$$\Delta = \sum \underbrace{\int \overline{M}M \, \mathrm{ds}}_{EI} + \sum \underbrace{\overline{F}_{\varrho} F_{\varrho} \, \mathrm{ds}}_{GA} + \sum \underbrace{\overline{F}_{N} F_{N} \, \mathrm{ds}}_{EA}$$
$$= \frac{FR^{3}}{EI} \int_{0}^{\pi} \oint \sin^{2} \theta \, \mathrm{d\theta} + k \frac{FR}{GA} \int_{0}^{\pi} \oint \cos^{2} \theta \, \mathrm{d\theta} + \frac{FR}{EA} \int_{0}^{\pi} \oint \sin^{2} \theta \, \mathrm{d\theta}$$
$$= \frac{\pi}{2} \left[\frac{FR^{3}}{EI} + k \frac{FR}{GA} + \frac{FR}{EA} \right]$$

式中 k为截面的切应力分布不均匀系数,对于 矩形截面, k=1,2 另外, $G=0.4E^{[4]}$, 于是:

$$\Delta = \frac{\pi FR^{3}}{2EI} \left[1 + \frac{1}{4} \left(\frac{t}{R} \right)^{2} + \frac{1}{12} \left(\frac{t}{R} \right)^{2} \right]$$
$$= \frac{\pi FR^{3}}{2EI} \left[1 + \frac{1}{3} \left(\frac{t}{R} \right)^{2} \right]$$
(4)

截面厚度 *t*一般远较 *R* 为小,因此上式方括号 中第二项远小于 1,由此可见剪切变形及轴向变形 的影响甚微,在受弯杆件中通常可以略去^[4]。因 此,在只计弯曲变形时,C型环沿螺栓轴向的挠度值 为:

$$\Delta D = \frac{\pi F R^3}{2EI} = \frac{3}{4} \frac{\pi F (d-t)^3}{E_W t^3}$$
(5)

1.3 C型环外表面最大应力值 σ 与挠度 ΔD 之间 的关系推导

结合(3)式和(5)式,得到挠度 ΔD 与 C型环外 表面最大应力值 σ 之间的近似关系

$$\Delta D = \pi \left(d - t \right)^2 \sigma / 4 t E \qquad (6)$$

对于(6)式,由于变形量计算过程中忽略了轴 向变形和剪切变形,应力计算过程又采用直梁公式 近似计算,所以由式(6)所得的挠度对 C型环进行 加载,C型环所受的实际应力值与计算应力值存在 一定的差距。若要取得精确的挠度一应力关系式, 应将(2)式和(4)式结合进行计算。

2 试验及数据分析

进行 C型环应力与挠度测量,通过试验数据对 加载应力误差进行分析和讨论,推荐对试件进行科 学加载的方式,以得到更准确的试验应力。

2 1 试验材料

采用 L245NB钢管,加工成 C型环, C型环外形 尺寸见表 1。

表 1 C型坏外形尺寸

C型环编号	外径 d mm	厚度 <i>t I</i> mm	宽度 w fmm
Ι	58 08	1.85	15
II	57.06	1.85	15
III	58 08	1.85	15

2 2 试验方法

C型环应变的测量和计算参照标准 GB/T

15970.5 应变片采用 BH 120-3 18AA(11)型号, 应变测量采用 YJ-31型静态电阻应变仪。 C型环 挠度的测量采用外径千分尺。对I、II、III3个 C型 环进行加载,同时测量相应的应变值和挠度值,各个 环每次测量 5个点(加载应力均在弹性极限范围之 内),重复测量 4次。其加载方法及应变片的粘贴 位置见图 1。

GB / T 15970.5标准中提及:最精确的加载方法 是在受拉应力的表面贴上周向和横向电阻应变片。 而在单向应力状态下,沿主应力方向贴片测量应变 量,采用单轴应变片^[3],通过应变仪测得主应变。 该试验中只在周向贴上电阻应变片,测量主应变 ε 根据虎克定律,应力与应变的关系为:

$$\sigma = E \varepsilon \tag{7}$$

式中 ε→→周向应变; *E*→→弾性模量, Pa

2.3 结果分析及讨论

231 两种标准中的应力计算公式比较

标准 NACE TM 0177 和 GB /T 15970 5中关于 确定 C型环试验应力的加载挠度计算公式存在区 别,适用范围也不一样。

NACE TM 0177第十章中给出的 C型环应力的 计算公式为:

$$\Delta D = \pi d(d - t) \sigma A t E$$
 (8)

该标准中对 C型环试样给出了要求, 宽度与厚度比 w /t应在 2~10之间, 直径与厚度比 d /t应在 10~100之间, 这与变形量计算过 程中忽略轴向变形和剪切变形以及应力计算过程采用直梁公式近似计算的条件基本相符, 不过, 这一公式限制了使用范围, 当 C型环的宽度、厚度、直径不在其范围内时不能采用该方法进行试验。

而 GB /T 15970 5 附录 A 中 C 型环应力的计算 公式为:

$$\Delta D = \pi \left(d - t \right)^2 \sigma / 4 \, EZ \tag{9}$$

式中 Z——弯梁的校正系数。

该式与(6)式相比,引入了弯梁的校正系数 Z, Z 为不大于 1的值,与 C 型环的 d t值有关。该修 正值包括了变形量计算过程中忽略轴向变形和剪切 变形以及应力计算过程采用直梁公式近似计算引起 的误差。通过 Z 值的修正,使(9)式中通过挠度 ΔD 计算所得的应力值和 C型环所受的实际应力更接 近。该标准中 C型环尺寸可在很宽的范围变化,除 不推荐外径小于 15 mm 的 C型环外,对其它的尺寸 没有限制,因此适用范围很广。唯一的问题是:Z值 需要足够的精确,且适用于各种尺寸的金属和合金。 232 实验数据分析及讨论

由表 1中 C型环的外形尺寸可知,这三个环均在 NACE TM 0177和 GB /T 15970 5的规定范围内。

分别取 3个 C型环测量数据中具有代表性的 一组进行应力计算。在 GB /T 15970 5标准中明确 认为最精确的应力加载是通过应变片测量应变所得 的应力。因此,将 GB /T 15970.5中的公式(9)和 NACE TM 0177中的公式(8)计算所得的应力值 σ , σ_2 与通过应变测量所得的较为精确的应力值 σ 进行比较。本实验中视 σ 为实测值,作为分析讨论 时的准确值。C型环I、II、III的比较结果见图 2~ 4

如图 2~4所示, C型环 I、II、III的应力计算值 σ, σ₂ 与实测值 σ基本相符, 这表示, 采用 GB/T 15970.5中的计算式 (9)和 NACE TM 0177中的计

图 4 C型环III的计算应力值比较

算式(8)进行加载时,C型环所受的实际应力与计 算应力存在偏差,对于以上进行试验的C型环,其 偏差基本上在5%以下。

出现这一偏差有两种可能的原因。一种可能是 计算公式的误差。由于在推导过程中忽略了轴向变 形和剪切变形以及使用直梁公式近似计算应力,两 个标准中的应力计算公式采用了各自的方式来修正 这些误差,所以对于不同外形尺寸的 C型环进行应 力计算时,误差大小会有不同。

另一种可能是试验中的测量误差。测量工具本 身存在精度范围,再加上挠度测量采用手动测量,C 型环与千分尺相对位置未固定,每次测量不能保证 完全在同一点上。

3 结论

本文通过对挠度一应力关系式的推导,认为 NACE TM 0177和 GB /T 15970 5中关于 C型环的 应力计算公式在推导过程中忽略了轴向变形和剪切 变形以及使用直梁公式近似计算应力,而采用了其 它方式来修正这些误差。由于其修正方式的不同, 两种标准的适用范围也不一样。当 C型环宽度与 厚度比 w /t在 2~10之间,直径与厚度比 d /t在 10 ~100之间时,可以采用 NACE TM 0177中的试验 方法,该方法较为简洁;也可以采用 GB /T 15970 5 标准方法。当 C型环外形尺寸不在该范围之中时, 采用 GB /T 15970 5标准方法。

试验测量数据分析发现,通过 NACE TM 0177 和 GB /T 15970 5中公式计算所得的应力值与通过 (下转第 32页) 素, 鹤壁煤电公司研发的煤层气发电技术, 有效地减 弱了瓦斯对矿井生产的威胁。该项目发电成功, 为 河南省同类矿井利用煤层气发电提供了新的经验。

随着世界对能源需求的不断增长,非常规天然 气资源及其利用必将日受重视。

参考文献:

- [1] 钱伯章.当代天然气市场及发展前景[N].世界能源导
 报, 2003 5 30
- [2] Jourson k Asia oil and gas stutas[J]. Asia Oil & Gas 2003 7(4): 89.
- [3] BP Statistical Review of World Energy[M]. BP company London June 2004, June 2003, June 2002
- [4] SierK. Running Low on Gas[J]. Chemical & Engineering News 2003 81(28): 19-21
- [5] Geber K J Running Low on Gas Chemical & Engineering News 2003 81(28): 19-21
- [6] Radler M. OG J200 List Shrinks Following More Consolidation
 [1]. O il & Gas Journal 2003 101(35): 44-51
- [7] Safer H. Assessing Long term Fundamentals for Natural Gas Supports Higher price Outlook [J]. Oil & Gas Jour nal 2003 101(37): 22 28
- [8] Clark J CERA: Natural G as Poised to Overtake Oil Use

By 2025[J]. O il & G as Jou mal 2004 102(9): 20 21.

- [9] Hoerir S W orld O ffshore O il Gas Production H as Risen Stead ily [J]. O il & Gas Jou mal 2004 102(14): 30-32
- [10] BCC, W orld G as D em and to R each 116.9 tcf in 2008
 [J]. O il & G as Journal 2004 102(14): 33.
- [11] Khalid A. Saudi Arabias G as Sector Its Roel and G row th Opportunities [J]. Oil & Gas Journal 2004 102 (23): 18-22
- [12] In am A. Multicyclic Hubbert Model Shows G bbal Convetional Gas Ou put Peaking in 2019[J]. Oil & Gas Journal 2004 102(31): 20-25.
- [13] Wood D C reating an Effective Gas Supply Network to Europe[J]. Petroleum Review 2005 59(696): 42-44
- [14] Fletcher S. Uniconvention Gas V ital to US Supply [J].
 O il & Gas Journal 2005 103(8): 20-24.
- [15] Soria E E conom ic Study Exam ines M ildle EastGas Jine to Europe[J]. O il & Gas Journal 2005 103 (26): 55 58
- [16] Saer G. Forces Beyond Dem and G row th Reshaping Trade in O il and Gas[J]. O il & Gas Jou mal 2005 103(29): 18-23.
- [17] Herier K. Stugging to Slow North Sea Depletion[J]. Petroleum Review 2005 59(704): 12-13.