聚酰亚胺膜回收不凝气中CO2模拟研究
Simulant Research of the Polyimide Membrane Separation on the CO2 of Low Temperature Fractionating Noncondensable Gas Based on PRO II Platform Software
浏览(1378) 下载(4)
- 引用格式:
-
屈丹龙.聚酰亚胺膜回收不凝气中CO2模拟研究[J].天然气与石油,2019,37(2):40-49.doi:10.3969/j.issn.1006-5539.2019.02.007
Qu Danlong.Simulant Research of the Polyimide Membrane Separation on the CO2 of Low Temperature Fractionating Noncondensable Gas Based on PRO II Platform Software[J].Natural Gas and Oil,2019,37(2):40-49.doi:10.3969/j.issn.1006-5539.2019.02.007
- DOI:
- 10.3969/j.issn.1006-5539.2019.02.007
- 作者:
- 屈丹龙
Qu Danlong
- 作者单位:
- 中国石油化工股份有限公司油田勘探开发事业部,
Oil Field Exploration and Development Division, China Petroleum & Chemical Corporation
- 关键词:
- CO2分离;膜法分离;聚酰亚胺膜;单级膜;不凝气
CO2 separation; Membrane separation; Polyimide membrane; Single-stage membrane; Noncondensable gas
- 摘要:
-
采用PROⅡ工艺软件对胜利油田EOR驱低温液化站塔顶不凝气进行了膜法分离效果研究。以应用较为广泛的聚酰亚胺膜为研究对象,建立分离规模为1 000 m3/d的单级膜计算模型进行仿真计算,以压缩机二级压缩压力、进膜气体温度、膜面积、渗透侧排气压力(增压或抽真空)为工艺变量,计算不同参数对渗透侧和高压侧产品的影响规律。使不凝气中的烃类和CO2得到回收利用。研究发现达到最优效果的边界条件是二级压缩压力为1.6 MPa,气体温度为40 ℃,渗透侧出气压力为0.2 MPa,在此条件下,膜面积最少,CO2收率和浓度、烃类收率、浓度和热值等参数均达到最优值。
In this paper, PRO II process software is used to study the membrane separation effect of the low temperature liquid station overhead noncondesnsable gas at Shengli oilfield.Taking the polyimide membrane which is widely used as the object, a single-stage membrane calculation model with a separation scale of 1000Nm3/d was established for simulation and calculation.The effects of secondary compression pressure, inlet gas temperature, membrane area, and osmotic exhaust pressure (supercharge or vacuum) on the osmotic side and high-pressure side products are calculated.The results show that the optimal process parameters are achieved at the secondary compression pressure of 1.6 MPa, the inlet gas temperature of 40 °C, and the osmotic exhaust pressure of 0.2 MPa.The comprehensive performance is good under this condition, and the membrane material is the least used (membrane area of 30m2).The results of osmotic side separation, CO2concentration, CO2yield and high pressure side separation, hydrocarbon concentration, hydrocarbon yield and hydrocarbon calorific value are all optimal.