X断陷火二段火山岩储层岩性识别技术研究
Study on Lithology Identification Technology of Volcanic Rocks in X Fault Depression
浏览(1403) 下载(7)
- 引用格式:
-
刘继龙,宋延杰,孙红,权新荣.X断陷火二段火山岩储层岩性识别技术研究[J].天然气与石油,2019,37(6):0.doi:
Liu Jilong, Song Yanjie, Sun Hong, Quan Xinrong.Study on Lithology Identification Technology of Volcanic Rocks in X Fault Depression[J].Natural Gas and Oil,2019,37(6):0.doi:
- DOI:
- 作者:
- 刘继龙1,2 宋延杰1,2 孙 红3 权新荣3
Liu Jilong1,2, Song Yanjie1,2, Sun Hong3, Quan Xinrong3
- 作者单位:
- 1. 东北石油大学地球科学学院,2. “非常规油气成藏与开发”省部共建国家重点实验室培育基地,3. 中国石油吉林油田分公司勘探开发研究院
1. School of Geosciences, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China; 2. Accumulation and Development of Unconventional Oil and Gas-State Key Laboratory Cultivation Base Jointly-Constructed by Heilongjiang Province and the Ministry of Science and Technology, Daqing, Heilongjiang, 163318, China; 3. Research Institute of Petroleum Exploration and Development, Jilin Oilfield Company, PetroChina, Songyuan, Jilin, 138000, China;
- 关键词:
- 火山岩;岩性识别;交会图技术;决策树模型;FMI
Volcanic rock; Lithology identification; Intersection graph technology; Decision tree model; FMI
- 摘要:
火山岩岩性的准确识别是火山岩储层描述与评价的基础。考虑到X断陷火山岩成分和结构的复杂性,在岩心分析、薄片鉴定分析的基础上,优选对岩性敏感的测井响应特征,利用交会图技术对酸性火山岩和中性火山岩进行自动识别,实现对火山岩成分的有效划分。在此基础上,应用决策树模型识别火山岩细分岩性,结合FMI测井,实现对火山岩结构的准确识别。将研究区的岩性按成分划分为流纹质火山岩和安山质火山岩2大类,按火山岩的结构划分为9小类。通过15口井的资料处理验证,岩性的识别准确率达到80%,满足研究区岩性识别要求。
Accurate identification of volcanic lithology is the basis of volcanic reservoir description and evaluation. Considering the complexity of composition and structure of volcanic rocks in X fault depression, on the basis of coring analysis and thin section identification analysis, the log response characteristics sensitive to lithology is optimized in this paper, and the intersection graph technology is used to automatically identify acidic volcanic rocks and neutral volcanic rocks in order to effectively classify volcanic rocks from composition. On this basis, the decision tree model is used to identify subdivision lithology of volcanic rocks, combined with FMI logging, to achieve identification of volcanic rock structure. The lithology of the study area can be divided into rhyolitic volcanic rocks and andesite volcanic rocks according to their composition made up of 9 sub-categories according to the structure of volcanic rocks. Through data processing and verification of 15 wells, the accuracy rate of lithology identification reaches 80% in this paper, which meets the lithology identification requirements of the study area.