地铁杂散电流对城市燃气管线的电化学腐蚀
Electrochemical corrosion to urban gas pipeline induced by metro stray current
浏览(954) 下载(30)
- 引用格式:
-
马坚生,欧阳开,赵云云,何治新.地铁杂散电流对城市燃气管线的电化学腐蚀[J].天然气与石油,2022,40(2):87-97.doi:10.3969/j.issn.1006-5539.2022.01.014
MA Jiansheng, OUYANG Kai, ZHAO Yunyun, HE Zhixin.Electrochemical corrosion to urban gas pipeline induced by metro stray current[J].Natural Gas and Oil,2022,40(2):87-97.doi:10.3969/j.issn.1006-5539.2022.01.014
- DOI:
- 10.3969/j.issn.1006-5539.2022.01.014
- 作者:
- 马坚生 欧阳开 赵云云 何治新
MA Jiansheng, OUYANG Kai, ZHAO Yunyun, HE Zhixin
- 作者单位:
- 广州地铁集团有限公司, 广东 广州 510220
Guangzhou Metro Group Co., Ltd., Guangzhou, Guangdong, 510220, China
- 关键词:
- 地铁杂散电流;城市燃气管线;杂散电流腐蚀;腐蚀监测;腐蚀防护
Metro stray current; Urban gas pipeline; Stray current corrosion; Corrosion monitoring; Corrosion protection
- 摘要:
- 杂散电流会对各类埋地金属结构产生严重的电化学腐蚀。燃气管线在城市区域分布密集,无法忽视其杂散电流腐蚀现象。近年来,因杂散电流腐蚀引发的燃气管线泄漏事故频发,城市燃气管线的杂散电流腐蚀治理迫在眉睫。为了总结当前燃气管线杂散电流腐蚀研究现状,以明晰未来发展方向,基于国内外杂散电流对埋地管线腐蚀的研究成果,分析了杂散电流分布及其电化学腐蚀的研究现状,总结了城市燃气管线的工况特点及其杂散电流腐蚀的内在科学问题,介绍了城市燃气管线腐蚀监测、检测方法以及防护技术,对未来燃气管线杂散电流腐蚀研究的进一步发展进行了展望。指出了未来亟待深入探究的方向:燃气管线内杂散电流信号的准确测量和特征重构方法;具备杂散电流时域特性的动态电流激励下电化学腐蚀行为;城市燃气管线杂散电流腐蚀特征量化及预测方法。研究结论可为燃气管线的杂散电流腐蚀防护和监测的相关研究提供借鉴。
Stray currents cause severe electrochemical corrosion to various buried metal structures. Gas pipelines are densely distributed in urban areas, and the phenomenon of stray current corrosion cannot be ignored. In recent years, gas pipeline leakage accidents caused by stray current corrosion have occurred frequently, and managing urban gas pipeline stray current corrosion is a matter of great urgency. In order to clarify the future development direction, current research status of stray current corrosion of gas pipelines are summarized. Based on the research results of stray current corrosion on buried pipelines at home and abroad, the current status of stray current distribution and electrochemical corrosion research is analyzed, and the operating characteristics of urban gas pipelines and the inherent scientific issues of stray current corrosion are summarized. Meanwhile, the corrosion monitoring and detection methods of urban gas pipelines and protective technologies are introduced, and the outlook on future development of stray current corrosion research on gas pipelines is proposed. Conclusions points to the future directions that need to be further explored, namely accurate measurement and feature reconstruction methods of stray current signals in gas pipelines; electrochemical corrosion behavior under dynamic current excitation with time domain characteristics of stray currents; Corrosion feature quantification and prediction methods for stray currents in urban gas pipelines. The results provide reference for related research on stray current corrosion protection and monitoring of urban gas pipelines.