多信息融合解释技术在复杂构造带成像中的应用
Application of multi-information fusion technique in imaging of complex tectonic belt
浏览(492) 下载(14)
- 引用格式:
-
孙博,阴学彬,郭翔,刘洪彦,陆家琦,韦豪,聂志伟.多信息融合解释技术在复杂构造带成像中的应用[J].天然气与石油,2024,42(1):74-84.doi:10.3969/j.issn.1006-5539.2024.01.011
SUN Bo, YIN Xuebin, GUO Xiang, LIU Hongyan, LU Jiaqi, WEI Hao, NIE Zhiwei.Application of multi-information fusion technique in imaging of complex tectonic belt[J].Natural Gas and Oil,2024,42(1):74-84.doi:10.3969/j.issn.1006-5539.2024.01.011
- DOI:
- 10.3969/j.issn.1006-5539.2024.01.011
- 作者:
- 孙博 阴学彬 郭翔 刘洪彦 陆家琦 韦豪 聂志伟
SUN Bo, YIN Xuebin, GUO Xiang, LIU Hongyan, LU Jiaqi, WEI Hao, NIE Zhiwei
- 作者单位:
- 中国石油东方地球物理公司研究院乌鲁木齐分院, 新疆 乌鲁木齐 830016
Urumqi Branch, Geophysical Research Institute, BGP, CNPC, Urumqi, Xinjiang, 830016, China
- 关键词:
- 双复杂;地质露头;砾岩刻画;速度模型;正演模拟
Double complexity; Geological outcrop; Conglomerate characterization; Velocity modeling; Forward modeling
- 摘要:
- 吐哈盆地火焰山构造带是晚燕山—喜山期造山运动形成的逆冲断裂控制的近东西走向的正向构造带,山体区地表起伏大,表层结构复杂,断层上下盘速度差异大,地下地质结构复杂。这种“双复杂”的地质特征导致地震资料信噪比低、成像品质差、深度偏移归位不准确,难以准确落实地下构造形态,严重制约研究区地震勘探和综合地质研究的进程。为提高研究区地震资料的信噪比及成像品质,首先以断层相关褶皱理论为指导,通过精细的解译地质露头资料,确定研究区的构造样式;其次,对浅表层砾岩进行精细刻画,通过确定火焰山两翼砾岩边界,明确浅层速度异常体发育范围,构建浅表层速度模型;第三,利用钻井及测井资料,详细分析研究区中深层纵向及横向速度变化规律,建立整体速度模型;第四,利用速度模型进行正演模拟,经过多轮次迭代验证,使得正演剖面与地震剖面达到最大趋同,进而获得最接近真实构造的地震资料。多信息融合解释技术的应用提高了火焰山地区地震资料成像品质,为进一步开展油气勘探奠定了数据基础,也为具有相似复杂构造特征地区的处理解释提供了技术参考。
The Tectonic Belt of Flaming Mountain, situated in the Turpan-Hami Basin, is an east-west-oriented belt controlled by thrust faults that have emerged from the Late Yanshan-Himalayan orogeny. This region is characterized by significant surface undulations and a complex structural composition. Near-surface faults exhibit steep inclines, accompanied by abrupt velocity transitions on either side, contributing to a multifaceted subsurface geology. These “double complex” geological attributes result in a reduced signal-to-noise ratio and compromised imaging quality. Consequently, seismic datas depth migration and positioning become less accurate, hindering precise determination of subsurface structures. Such challenges severely impede seismic exploration and comprehensive geological studies within the area. To enhance the seismic datas signal-to-noise ratio and imaging clarity in the study zone, this paper initiates the approach by applying the theory of fault-related folding to guide the determination of structural styles through meticulous interpretation of geological outcrop data. Following this, an in-depth characterization of the shallow surface conglomerate is performed to ascertain the extent of shallow velocity anomalies, using the boundaries of conglomerates flanking the Flaming Mountain to inform a shallow surface velocity model. Subsequently, an examination of the drilling and logging data facilitates a thorough analysis of the velocity variations patterns, both vertically and horizontally, in the deep layers, culminating in the development of a comprehensive velocity model. The fourth phase involves utilizing this velocity model for forward simulation, with multiple iterations of verification to achieve maximum alignment between the simulation profiles and seismic data, thus acquiring an approximation closest to the real structure. The integration of multi-information fusion interpretation technology has substantially refined the imaging quality of seismic data in the Flaming Mountain area. This advancement not only lays the groundwork for further oil and gas exploration but also provides a technical reference for processing and interpretation in regions with similarly complex structural features.