【CCUS及氢能专题】超临界CO2管道输送流动保障分析要点探讨
Discussion on flow assurance issues in supercritical CO2 pipeline transmission
浏览(2333) 下载(50)
- 引用格式:
-
陈俊文,关沛丰,汤晓勇,史博会,昝林峰,张则鹏,宫敬,郭艳林,彭伟.【CCUS及氢能专题】超临界CO2管道输送流动保障分析要点探讨[J].天然气与石油,2024,42(2):8-15.doi:10.3969/j.issn.1006-5539.2024.02.002
CHEN Junwen, GUAN Peifeng, TANG Xiaoyong, SHI Bohui, ZAN Linfeng, ZHANG Zepeng, GONG Jing.Discussion on flow assurance issues in supercritical CO2 pipeline transmission[J].Natural Gas and Oil,2024,42(2):8-15.doi:10.3969/j.issn.1006-5539.2024.02.002
- DOI:
- 10.3969/j.issn.1006-5539.2024.02.002
- 作者:
- 陈俊文1 关沛丰2 汤晓勇1 史博会3 昝林峰1 张则鹏4 宫敬3 郭艳林1 彭伟5
CHEN Junwen1, GUAN Peifeng2, TANG Xiaoyong1, SHI Bohui3, ZAN Linfeng1, ZHANG Zepeng4, GONG Jing3,
- 作者单位:
- 1. 中国石油工程建设有限公司西南分公司, 四川 成都 610041; 2. 中国石油集团长城钻探工程有限公司四川页岩气项目部, 四川 威远 642450; 3. 中国石油大学(北京)机械与储运工程学院, 北京 102249; 4. 中国石油工程建设有限公司新能源事业部, 北京 100120; 5. 中国石油西南油气田公司蜀南气矿, 四川 泸州 646000
1. CPECC Southwest Company, Chengdu, Sichuan, 610041, China; 2. Sichuan Shale Gas Project Department, CNPC, Great Wall Drilling Engineering Co., Ltd., Weiyuan, Sichuan, 642450, China; 3. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing, 102249, China; 4. CPECC New Energy Department, Beijing, 100120, China; 5. Shunan Gas Mine, PetroChina Southwest Oil & Gasfield Company, Luzhou, Sichuan, 646000, China
- 关键词:
- 超临界CO2;管道;流动保障;计划性放空
Supercritical CO2; Pipeline; Flow assurance; Planned blowdown
- 摘要:
近年来,随着碳捕集与封存的需求不断提高,CO2管道成为关键支撑,大规模发展趋势明显。CO2管道可采用气相、超临界相或密相输送的方式。相比气相输送,长距离CO2管道采用超临界输送模式具有更好的经济性。与常规油品输送相比,超临界CO2在输送过程中存在水击超压、热膨胀超压、降压相变、相变低温等问题,受超临界CO2物性特点、输送工艺等影响,超临界CO2流动保障值得系统性探讨。基于超临界CO2输送工艺与运行特点,识别了超临界CO2管道输送流动保障分析要点,探讨了超临界CO2与常规油品的水击超压、热膨胀超压问题,具体开展了超临界CO2计划性放空管体相态与温度分布研究。研究表明:超临界CO2管道水击超压影响相对较小,但存在水击点下游降压相变风险;超临界CO2管道停输后存在热膨胀超压风险;受地形影响,超临界CO2管道计划性放空时存在不均匀相变与不均匀温度分布等问题;超临界CO2管道计划性放空宜同步开展数值模拟分析,泄放过程温度监测方案还需进一步研究。研究成果可为超临界CO2管道设计与运行提供相关借鉴。
In recent years, with the growing demand for carbon capture and storage, CO2 transmission pipelines have emerged as a key infrastructure, with a clear trend towards large-scale development. CO2 can be transported in pipelines through gaseous state, supercritical state or dense phase state. For long-distance CO2 transmission pipelines, the supercritical transportation mode is more economical compared with gaseous transmission. Compared with conventional oil transmission pipelines, supercritical CO2 transmission faces issues such as phase change, water hammer effect, and overpressure during the transmission process. Affected by its physical properties and transmission technology, its flow assurance deserves systematic discussion. Based on the supercritical CO2 transmission process and its operating characteristics, this study identifies key aspects of flow assurance analysis for supercritical CO2 pipelines. It explores the overpressure issues due to water hammer and thermal expansion between supercritical CO2 and conventional oil products. Additionally, it specifically conducts a study on the phase change and temperature distribution in the planned blowdown of supercritical CO2 in the pipelines. Research shows that the impact of water hammer overpressure on supercritical CO2 pipelines is relatively minor, but risk of decompression phase change downstream of the water hammer point do exist; moreover, stopping the flow in the supercritical CO2 pipeline can lead to thermal expansion and overpressure issues; and terrain influence can cause uneven phase change and temperature distribution during blowdown. Therefore, the planning for the blowdown of supercritical CO2 pipelines should incorporate numerical simulation analysis, and the temperature monitoring procedure during this process requires additional research. The research results can provide relevant reference for the design and operation of supercritical CO2 pipelines.